Works Technical topics Evaluation software Community Events

My Blogs Public Blogs My Updates

IT Best Kept Secret Is Optimization

```
Your entry has been auto saved -
    Today 12:33 PM
```


Edit Entry

AnalyticBridge Mathematical Competition
Tags:
None Add Tags

Preview

What do you do on vacation? I'd like to say that I rest, or that I visit interesting places, or that I have fun by the sea. I promise I'll do all of it during my current holidays, but I started on the wrong foot: I worked on a mathematical problem proposed by Vincent Granville.
The Problem
Let me state the problem here. In the following, x is any permutation of the integers from 0 to $n-1$. Let's define three functions

$$
\begin{aligned}
& u(x)=\operatorname{sum}_{i}|x(i)-i| \\
& v(x)=\operatorname{sum}_{i} \mid(x(i)-(n-1-i) \mid \\
& t(x)=\min (u(x), v(x))
\end{aligned}
$$

where $/ a /$ is the absolute value of a
The problem is to compute $q(n)$ defined as the maximum of $t(x)$ over all permutations x of the integers $0 . . n-1$
For reasons that will be clearer later, let m be the integral qutotient of the division of n by 4 , and r be the remainder, i.e.

$$
\begin{aligned}
& n=4 m+r \\
& 0<=r<4
\end{aligned}
$$

An Upper Bound
The key idea to compute a good upper bound on $q(n)$ is to remark that $t(x)<=1 / 2 w(x)$ where $w(x)=u(x)+v(x)$, and then compute the maximum w_{n} of $w(x)$ over all permutations x of the integers $0 . . n-1$. We will then have

$$
q(n)<=1 / 2 w_{n}
$$

We have $w(x)=$ sum_i $f\left(i, x_{i}\right)$ where $f(i, j)=|j-i|+|j-(n-1-i)|$
Let's study the function f. Its value is given by

$$
\begin{array}{ll}
f(i, j)=2 j-(n-1) & \text { if } j>=i \& j>=n-1-i \\
f(i, j)=2 i-(n-1) & \text { if } j<=i \& j>=n-1-i \\
f(i, j)=-2 i+(n-1) & \text { if } j>=i \& j<=n-1-i \\
f(i, j)=-2 j+(n-1) & \text { if } j<=i \& j<=n-1-i
\end{array}
$$

Let's compute the value $f(i, j)$ for each cell (i, j) of the n by n square. It is easy to check that the cells having the same value are arranged in concentric rings as depicted in Fig. 1.

Figure 1. Value of f for cells of the $n \times n$ square
The value of cells in ring R_{k} is $n-1-2 k$ where R_{k} is the set of cells (i, j) such that one of the following conditions is true
(i) $k<=i<=n-1-k \& j=k$
(ii) $k<=i<=n-1-k \& j=n-1-k$
(ii) $k<=j<=n-1-k \& i=k$
(iv) $k<=j<=n-1-k \& i=n-1-k$

A permutation x is equivalent to a set of n cells in the square such that there is exactly one cell per row, and exactly one cell per column. This set is $\{(i, x(i)) / 0<=i<n\}$. Note

- Create \& Edit

Entries
Comments
Links
File Uploads
Referrers
Settings
General
Authors
Theme
Templates

Comments

None

Recent Drafts

AnalyticBridge Mathe... Big CPU, not Big Dat... 0 Numerics What Is The Objectiv... Do Not Sell ROI - What Human Can't Do II Want The Best Solu... Being All Different Some Modeling Tricks How NY Tax Departmen... INFORMS Movie: A new...
Simple, not easy !
How did it started?
Is it a Technology?
QWho is in the driver...
20 years!

Recent Entries

(0)More On Absolute Val...

Technical Lessons Le... D-Wave vs CPLEX Comp.. D-Wave vs CPLEX Comp.. D-Wave vs CPLEX Comp..
IIs Quantum Computing..
Proactive Analytics
OCPLEX 12.5.1
Do We Need Accuracy ...
Qirtual User Group: ...
(IBM ILOG Optimizatio...

- Efficiency Can Get Y... Big Data For Dummies My First Demo
Analytics Is A Mean ...
Large Batch Sizes
Do More With Less
Constraint Programmi...
The Orange Algorithm How Zara Really Grew...
that there are at most 4 such cells in a given ring (at most one for each side of the ring).
Finding the maximum of $w(x)$ over all permutations amounts to selecting such set that maximizes the sum of the value of its cells. Given the value of cells in rings decreases with k, the maximum is obtained by selecting as many cells as possible from the rings in increasing values of k. It means selecting 4 cells in each of the first m rings then r cells in the m-th ring, where m is quotient of $n / 4$ and r is the remainder. The corresponding value of $w(x)$ is

$$
w_{n}=\operatorname{sum}_{0<=k<m}(n-1-k)+r(n-1-m)
$$

Elementary calculus gives

$$
w_{n}=12 m^{2}+6 m r+r(r-1)
$$

Therefore, we have

$$
\text { (1) } \quad q(n)<=6 m^{2}+3 m r+r(r-1) / 2
$$

A Lower Bound

Let's now look at lower bounds for $q(n)$. It will depend on the value of r. We will simply use that $q(n)>=t(x)$ where x is a permutation.
Case r = 0
We have $n=4 m$. Let's define the permutation x^{0} as follows.

$x O(i)=2 m+i$	if $0<=i<m$
$x O(i)=2 m-1-i$	if $m<=i<2 m$
$x O(i)=6 m-1-i$	if $2 m<=i<3 m$
$x O(i)=-2 m+i$	if $3 m<=i<n$

It is depicted in Fig2. It is easy to check the following

$$
t\left(x^{0}\right)=6 m^{2}
$$

Therefore we have

$$
\text { (2) } \quad q(4 m)>=6 m^{2}
$$

From (1) above and (2) we get

$$
\text { (3) } \quad q(4 m)=6 m^{2}
$$

Equivalently
(4) $\quad q(n)=3 / 8 n^{2}$ if n is a multiple of 4

Figure 2. A permutation

Advanced Settings

*Required
Post Save as Draft \quad Return to Edit Mode \quad Cancel

\square

