	rks _® Techr	nical topics	Evaluation s		Commun	ity Even			
ly Blogs Public Blogs	My Updates								
est Kept Secret Is Optimiza	ation						Stop Fol	lowing this Blog New	Entry Vie
Your entry has been auto save Today 12:33 PM	d -								
Edit Entry									
*Title: AnalyticBridge Mathematical Com Tags: None Add Tags	npetition								
			Previe	W					
What do you do on vacation? I'd I started on the wrong foot: I worked The Problem	d on a mathematical pro	blem proposed	esting places, or tha by Vincent Granvill	tt I have fun by t le.			l of it during	my current holidays	s, but I
Let me state the problem here. In $u(x) = sum_i x(i) - i $ $v(x) = sum_i (x(i) - (n-1-i) $	ane ronowing, x is any p	Finiciation of t	e integers from Ut	u 11-1. Lei s defir	ie unee tur	เงแบทร			
t(x) = min(u(x), v(x))									
where $ a $ is the absolute value of a			armutations v of the	integers () n 1					
The problem is to compute $q(n)$ de For reasons that will be clearer lat n = 4m + r				-					
0 <= r < 4 An Upper Bound									
The key idea to compute a good upermutations x of the integers 0rn $q(n) \le 1/2 w_n$ We have $w(x) = sum_i f(i, x_i)$ when	-1. We will then have		<i>:) <= 1/2 w(x)</i> where	$\Theta W(X) = U(X) + V$	<i>(x)</i> , and the	en compute the	maximum v	<i>v_nof w(x)</i> over all	
Let's study the function <i>f</i> . Its value									
f(i,j) = 2j - (n-1)	if $j >= i \& j >= n-1-i$								
f(i,j) = 2i - (n-1)	if <i>j</i> <= <i>i</i> & <i>j</i> >= <i>n</i> -1- <i>i</i>								
f(i,j) = -2i + (n-1) f(i,j) = -2j + (n-1)	if j >= i & j <= n-1-i if j <= i & j <= n-1-i								
Let's compute the value $f(i,j)$ for each $f(i,$		square. It is e	asy to check that th	e cells having th	ie same va	lue are arrange	d in concen	tric rings as depicte	d in Fig.
1.									
	j -	<u> </u>							
	n-1		n-1 n-3						
	n-1-k		n-1-2k	_					
	k								
	K]					
	0								
	U	0	k	n-1-k	n-1 i				
		_	Mahaa ((C						
		Figure 1	. Value of f for cells	of the nxn squa	re				

A permutation x is equivalent to a set of n cells in the square such that there is exactly one cell per row, and exactly one cell per column. This set is { (i,x(i)) | 0 <= i < n}. Note

reate & Edit

Create & Edit
Entries
Comments
Links
File Uploads
Referrers
Settings
General
Authors
Theme
Templates

Comments

None

Recent Drafts

Recent Entries

More On Absolute Val... Technical Lessons Le... D-Wave vs CPLEX Comp... D-Wave vs CPLEX Comp... D-Wave vs CPLEX Comp... Is Quantum Computing... Proactive Analytics CPLEX 12.5.1 Po We Need Accuracy ... Virtual User Group: ... IBM ILOG Optimizatio... Efficiency Can Get Y ... Big Data For Dummies My First Demo Analytics Is A Mean ... Zarge Batch Sizes Provide the second seco Constraint Programmi... The Orange Algorithm How Zara Really Grew...

that there are at most 4 such cells in a given ring (at most one for each side of the ring). Finding the maximum of w(x) over all permutations amounts to selecting such set that maximizes the sum of the value of its cells.

Given the value of cells in rings decreases with k, the maximum is obtained by selecting as many cells as possible from the rings in increasing values of k. It means selecting 4 cells in each of the first m rings then r cells in the m-th ring, where m is quotient of n/4 and r is the remainder. The corresponding value of w(x) is $w_n = sum_{0 <=k < m}(n-1-k) + r(n-1-m)$

Elementary calculus gives

 $w_n = 12 m^2 + 6 mr + r(r-1)$

Therefore, we have

(1) $q(n) \le 6 m^2 + 3 mr + r(r-1)/2$

A Lower Bound

Let's now look at lower bounds for q(n). It will depend on the value of r. We will simply use that $q(n) \ge t(x)$ where x is a permutation. Case r = 0

We have n = 4m. Let's define the permutation x^0 as follows.

x0(i) = 2m+i	if 0 <= i < m
x0(i) = 2m-1-i	if <i>m <= i < 2m</i>
x0(i) = 6m-1-i	if 2m <= i < 3m
x0(i) = -2m+i	if <i>3m <= i < n</i>

It is depicted in Fig2. It is easy to check the following

1 0	, 0					
$t(x^0)=6\ m^2$						
Therefore we have						
(2)	$q(4m) >= 6m^2$					
From (1) above and (2) we get						
(3)	$q(4m) = 6m^2$					
Equivalently						
(4)	$q(n) = 3/8 n^2$ if n is a multiple of 4					

j n-1 3m 2m 2m 0 0 m 2m 3m n-1 i Figure 2. A permutation

Advanced Settings

Save as Draft

```
*Required
```

Post

Return to Edit Mode Cancel

	bout elp	Feeds	Report abuse Terms of use	Faculty Students	
С	ontact us		IBM privacy	Business Partners	
Submit content		IBM accessibility			