Clustering Large Datasets in Arbitrary Metric Spaces

Venkatesh Ganti Raghu Ramakrishnan Johannes Gehrke
Computer Sciences Department, University of Wisconsin-Madison
Allison PowelF James French
Department of Computer Science, University of Virginia, Charlottesville

Abstract in a coordinate spacean be represented as vectors. The
vector representation allows various vector operations, e.g.,

Clustering partitions a collection of objects into groups addition and subtraction of vectors, to form condensed rep-
called clusters, such that similar objects fall into the same resentations of clusters and to reduce the time and space
group. Similarity between objects is defined by a distancerequirements of the clustering problem [4, 26]. These oper-
function satisfying the triangle inequality; this distance ations are not possible in a distance space thus making the
function along with the collection of objects describes a dis- problem much harder.
tance space. In a distance space, the only operation possi- The distance function associated with a distance space
ble on data objects is the computation of distance betweencan be computationally very expensive [5], and may dom-
them. All scalable algorithms in the literature assume a spe- inate the overall resource requirements. For example, con-
cial type of distance space, namely:-alimensional vector sider the domain of strings where the distance between two
space, which allows vector operations on objects. strings is theedit distanc& Computing the edit distance

We present two scalable algorithms designed for cluster- between two strings of lengths andn requiresO(mn)
ing very large datasets in distance spaces. Our first algo- comparisons between characters. In contrast, computing the
rithm BUBBLE is, to our knowledge, the first scalable clus- Euclidean distance between twedimensional vectors in a
tering algorithm for data in a distance space. Our second coordinate space requires jU3tn) operations. Most algo-
algorithm BUBBLE-FM improves upon BUBBLE by reduc- rithms in the literature have paid little attention to this par-
ing the number of calls to the distance function, which may ticular issue when devising clustering algorithms for data in
be computationally very expensive. Both algorithms makea distance space.
only a single scan over the database while producing high In this work, we first abstract out the essential features
clustering quality. In a detailed experimental evaluation, of the BIRCH clustering algorithm [26] into thBIRCH*
we study both algorithms in terms of scalability and quality framework for scalable clustering algorithms. We then in-
of clustering. We also show results of applying the algo- stantiate BIRCH resulting in two new scalable clustering

rithms to a real-life dataset. algorithms for distance spaces: BUBBLE and BUBBLE-
FM.
1. Introduction The remainder of the paper is organized as follows. In

o) o Section 2, we discuss related work on clustering and some

Data clustering is an important data mining problem ¢ o initial approaches. In Section 3, we present the
[1, 8,9, 10, 12, 17, 21, 26]. The goal of clustering is 10 grcH* framework for fast, scalable, incremental clus-

partition a collection of objects into groups, calleldsters (ering algorithms. In Sections 4 and 5, we instantiate the

such that “similar” objects fall into the same group. Simi- framework for data in a distance space resulting in our al-
larity between objects is captured by a distance function. gorithms BUBBLE and BUBBLE-FM. Section 6 evaluates
In this paper, we consider the problem of clustering large o performance of BUBBLE and BUBBLE-FM on syn-

datasets in distance spac which the only operation pos- hetic datasets. We discuss an application of BUBBLE-FM
sible on data objects is the computation of a distance func-

tion that satisfies the triangle inequality. In contrast, objects !A distance space is also referred to asagitrary metric space We
use the terntdistance spac emphasize that only distance computations
*The first three authors were supported by Grant 2053 from the IBM are possible between objects. We calhadimensional spaceaordinate

corporation. spaceto emphasize that vector operations like centroid computation, sum,
tSupported by an IBM Corporate Fellowship and difference of vectors are possible.
fSupported by NASA GSRP NGT5-50062. 2The edit distance between two strings is the number of simple edit

§This work supported in part by DARPA contract N66001-97-C-8542. operations required to transform one string into the other.

to a real-life dataset in Section 7 and conclude in Section 8. Multidimensional scaling(MDS) is a technique for
We assume that the reader is familiar with the definitions distance-preserving transformations [25]. The input to a

of the following standard terms: metric spaég,norm of a MDS method is a sef;,, of N objects, a distance func-

vector, radius, and centroid of a set of points in a coordinatetion d, and an integek; the output is a sef,,; of N k-

space. (See the full paper [16] for the definitions.) dimensional image vectors in/adimensional coordinate
o space (also called thenage spacg one image vector for
2. Related Work and Initial Approaches each object, such that the distance between any two objects

In this section, we discuss related work on clustering, i_s equal (or very close) to the digtance between their respec-
and three important issues that arise when clustering datd!Ve Image vectors. MDS al'gorlthms do not scale to Iarge
datasets for two reasons. First, they assume that all objects

in a distance space vis-a-vis clustering data in a coordinate. =") .
space. fit in main memory. Second, most MDS algorithms pro-

Data clustering has been extensively studied in the o sed ".‘ the I.iterature_ compute Qistances betwee_n all pos-
Statistics [20], Machine Learning [12, 13], and Pattern S'ble. pairs of |nput20bjects as a first step thus having com-
Recognition literature [6, 7]. These algorithms assume thatplexIty atleasO(N") [19]. Recently, Lin et al. developed

all the data fits into main memory, and typically have run- a scalable MDS method called FastMap [11]. FastMap pre-

ning times super-linear in the size of the dataset. Therefore,serv.es d|stancgs approximately in the image space while re-
they do not scale to large databases. quiring only a fixed number of scans over the data. There-

Recently, clustering has received attention as an impor_fore, one possible approach for clustering data in a distance

tant data mining problem [8, 9, 10, 17, 21, 26]. CLARANS space is to map alN objects into a coordinate space us-

[21] is a medoid-based method which is more efficient than ing FastMap, and then cluster the resultant vectors using a
earlier medoid-based algorithms [18], but has two draw- scalable clustering algorithm for data in a coordinate space.

backs: it assumes that all objects fit in main memory, and we call th|s.approe.1ch thap—Flrstoptpn and empirically
) " . evaluate it in Section 6.2. Our experiments show that the
the result is very sensitive to the input order [26]. Tech-

nigues to improve CLARANS's ability to deal with disk- qui“tyff c!usterlr;g Ithus qbtalned(jls not'good. ii d
resident datasets by focussing only on relevant parts of the “*PP Ications of clustering are domain-specific and we
database usingi*-trees were also proposed [9, 10]. But believe that a smgle_algorlthm will not serve all require-
these techniques depend @ti-trees which can only in- ments. A pre-clustering phase, to obtain a data-dependent
dex vectors in a coordinate space. DBSCAN [8] uses asummarization of large amounts of data into sub-clusters,
density-based notion of clusters to discover clusters of ar-\Vas shown o be very effective in making more complex
bitrary shapes. Since DBSCAN relies on the-Tree for data analysis feasible [4, 24, 26]. Therefore, we take the

speed and scalability in its nearest neighbor search queries‘?lpproach of developing yare-qlusterlngalgorlthm that re- .

it cannot cluster data in a distance space. BIRCH [26] Wasturns. (_:ondenseq representations of sub-clusters. A domain-
designed to cluster large datasetsiedimensional vectors s:oecmc cluster[;ng metlhod. ﬁan further analyze the sub-

using a limited amount of main memory. But the algorithm clusters output by our algorithm.

relies heavily on vector operations, which are defined only
in coordinate spaces. CURE [17] is a sampling-based hier-
archical clustering algorithm that is able to discover clusters In this section, we present tB$RCH: framework which

of arbitrary shapes. However, it relies on vector operatlon:sgeneralizes the notion of a cluster feature (CF) and a CF-

and therefore cannqt cluster ‘?'ata Ina dlstancg SPace. e, the two building blocks of the BIRCH algorithm [26].

' Three important issues arise when'clusterlng datf';\ iN @) the BIRCH: family of algorithms, objects are read from
distance space versus data in a coordinate space. First, thgye gatabase sequentially and inserted into incrementally
concgpt of a centr0|d. is not defined. $econd, the d'Stanceevolving clusters which are representedjeperalized clus-
function could potentially be computationally very expen- (o featyres (CFs). A new object read from the database is
sive as discussed in Section 1. Third, the domain-specifiCingerted into the closest cluster, an operation, which poten-
nature of clustering appllcatlons pla'ces requirements thattially requires an examination of all existing & There-
are tough to be met byju§t one algorithm. fore BIRCH* organizes all clusters in an in-memory index,

Many clustering algorithms [4, 17, 26] rely on vector 4 height-balanced tree, calledGE*-tree. For a new ob-
operations, e.g., the calculation of the centroid, to repre-ject, the search for an appropriate cluster now requires time
sent clusters and to improve computation time. Such algo-|ogarithmic in the number of clusters as opposed to a linear
rithms cannot cluster data in a distance space. Thus one apscan.
proachis t_o map all o_bject.s intdkadimensional cpordinatg In the remainder of this section, we abstractly state the
space while preserving distances between pairs of 0bjects,,myonents of the BIRCHframework. Instantiations of

and then cluster the resulting vectors. these components generate concrete clustering algorithms.

3. BIRCH*

3.1. Generalized Cluster Feature the downward path, the non-leaf entry “closestQds se-

| . loorith d ion for th lected to traverse downwards. Intuitively, directifigo the
Any clustering algorithm needs a representation for the o,y node of the closest non-leaf entry is similar to identi-

clusters detected in the data. The naive representation use@ing the most promising region and zooming into it for a

all objects in a cluster. However, since a cluster correspondsmore thorough examination. The downward traversal con-
to a dense region of objects, the set of objects can be ”eateﬂnues iill O reaches a leaf node. Wheh reaches a leaf

collectively through a summarized representation. We will nodeL. it is inserted into the cluste? in L closest to0 if

calllsuch a co_ndensed, summarized representation of a Clust‘ne threshold requiremefitis not violated due to the inser-

ter |t§general|zgd cluster feature (Cf: - , tion. Otherwise forms a new cluster i.. If L does not
Since the entire dqtaset usu.ally dqes not fitin main mem-y oo enough space for the new cluster, it is split into two

ory, we cannot examine all objects simultaneously to cOM- 4f nodes and the entries Inredistributed: the set of leaf

pute CFs of clusters. Therefore, we incrementally evolve ¢nyries in is divided into two groups such that each group
clusters and their Cf5, i.e., objects are scanned sequen- .,nsists of “similar’ entries. A new entry for the new leaf

tially and the set of clusters is updated to assimilate new \,qe is created at its parent. In general, all nodes on the
objects. Intuitively, at any stage, the next object is inserted path from the root td, may split. We omit the details of the

into the cluster “closest” to it as long as the insertion does jgertion of an object into the CRree because it is similar
not deteriorate the “quality” of the cluster. (Both concepts g that of BIRCH [26].

are explained later.) The CHks then updated to reflect the
insertion. Since objects in a cluster are not kept in main
memory, CEs should meet the following requirements.

During the data scan, existing clusters are updated and
new clusters are formed. The number of nodes in the-CF
tree may increase beyord before the data scan is com-
¢ Incremental updatability whenever a new objectis in- plete due to the formation of many new clusters. Then

serted into the cluster. it is necessary to reduce the space occupied by thie CF
tree which can be done by reducing the number of clus-
ters it maintains. The reduction in the number of clusters is
achieved by merging close clusters to form bigger clusters.

CF's are efficient for two reasons. First, they occupy BIRCH* merges clusters by increasing the threshold value
much less space than the naive representation. Second, caf associated with the leaf clusters and re-inserting them into
culation of inter-cluster and intra-cluster measurements us-g new tree. The re-insertion of a leaf cluster into the new
ing the CF's is much faster than calculations involving all tree merely inserts its CF all objects in leaf clusters are
objects in clusters. treated collectively. Thus a new, smaller ‘Gee is built.

. After all the old leaf entries have been inserted into the new
3.2.CF-Tree tree, the data scan resumes from the point of interruption.

Note that the CFtree insertion algorithm requireks-
tancemeasures between the “inserted entries” and node en-
tries to select the closest entry at each level. Since insertions
are of two types: insertion of a single object, and that of a
leaf cluster, the BIRCHframework requires distance mea-

tree are classified inteafandnon-leafnodes accordingto ~ S4r€s to be instantiated between a Gfd an object, and

their position in the tree. Each non-leaf node contains at between two CFs (or clﬁs.ters). | mai h
mostB entries of the formQF child:), i € {1,...,B}, In summary, CFs, their incremental maintenance, the

wherechild; is a pointer to the'* child node, and CFis distance measures, and the threshold requirement are the
the CF of the set of objects summarized by the sub-tree COMPONeNts of the BIRCHframework, which have to be
rooted at tha'” child. A leaf node contains at mo#t en- instantiated to derive a concrete clustering algorithm.

tries, each of the form [CH, i € {1,..., B}; each leaf
entry is the CF of a cluster. Each cluster at the leaf level 4. BUBBLE

¢ Sufficiency to compute distances between clusters,
and quality metrics (like radius) of a cluster.

In this section, we describe the structure and functional-
ity of a CF*-tree.

A CF*-tree is a height-balanced tree structure similar to
the R*-tree [3]. The number of nodes in the GFee is
bounded by a pre-specified numhe&f. Nodes in a CF

satisfies dhreshold requiremerif, which controls its tight- In this section, we instantiate BIRCHor data in a dis-
ness or quality. _ _ _ tance space resulting in our first algorithm called BUB-
The purpose of the CFtree is to direct a new obje@ B|E. Recall that CEs at leaf and non-leaf nodes differ in

to the cluster closest to it. The functionality of non-leaf en- their functionality. The former incrementally maintain in-
tries and leaf entries in the Chree is different: non-leaf formation about the output clusters, whereas the latter are
entries exist to “guide” new objects to appropriate leaf clus- ysed to direct new objects to appropriate leaf clusters. Sec-
ters, whereas leaf entries represent the dynamically evolv+jons 4.1 and 4.2 describe the information in & Q&nd then

ing clusters. For a new object, at each non-leaf node on jncremental maintenance) at the leaf and non-leaf levels.

4.1. CFs at the leaf level
4.1.1 Summary statistics at the leaf level

For each cluster discovered by the algorithm, we return the

following information (which is used in further processing):
the number of objects in the cluster, a centrally located ob-
jectin it and its radius. Since a distance space, in general

does not support creation of new objects using operations

on a set of objects, we assign an actual object in the cluste
as the cluster center. We define ttastroid O of a set of
objectsO which is the generalization of the centroid to a
distance spacé.We now introduce th&owSunof an ob-
ject O with respect to a set of object3, and the concept
of animage spacéS(0O) of a set of object® in a distance

5] can be mapped to vecto(8,0), (3,0), (0,4) in the 2-
dimensional Euclidean space. This is one of many possible
mappings.

The following lemma shows that under aRy-distance-
preserving transformatiofy the clustroid o0 is the object
O € O whose image vectof (O) is closest to the centroid
f the set of image vector§O). Thus, the clustroid is the
Igeneralization of the centroid to distance spaces. Following
the generalization of the centroid, we generalize the defi-
nitions of the radius of a cluster, and the distance between
clusters to distance spaces.

0

Lemma 4.2 LetO = {0y, ...,0,} be asetof objectsin a
distance spacgS, d) with clustroid© and letf : O — R*

space. Informally, the image space of a set of objects is ape aR*-distance-preserving transformation. [@tbe the

coordinate space containing mmage vectofor each object

centroid of f(©). Then the following holds:

such that the distance between any two image vectors is the

same as the distance between the corresponding objects.

In the remainder of this section, we Us® d) to denote a
distance space whefkis the domain of all possible objects
andd : S x § — R is a distance function.

Definition 4.1 Let O {04,...,0,} be a set of ob-
jects in a distance spadé,d). The RowSumof an ob-
jectO € O is defined aRowSum(0) % doiy (0, 05).

The clustroid O is defined as the obje® € O such that

A

VYO € O : RowSum(O) < RowSum(O).

Definition 4.2 Let O = {04, ...,0,} be a set of objects
in a distance spacgS,d). Let f : O — R* be a func-
tion. We callf anR*-distance-preserving transformation
if Vi,j € {1,...,n} : d(0;,0;) = [|f(0:) — f(O;)]
where|| X —Y'|| is the Euclidean distance betwe&randY

in R*. We callR* theimage spacef © underf (denoted
IS¢(0)). For an objecO € O, we call f(O) theimage vec-

tor of O underf. We definef (0) < {£(01),..., f(On)}.

VO € 0:[|f(0) - 0| < [|f(0) = O]

Definition 4.3 Let O = {Oy,...,0,} be a set of objects
in a distance spade, d) with clustroidO. Theradiusr(O)

of O is defined ag(0) ef M.

n

Definition 4.4 We define two different inter-cluster dis-
tance metrics between cluster features. gtand O,
be two clusters consisting of objedt®;,,...,01,, } and
{Os1,...,04,,}. Let their clustroids beO; and O,
respectively. We define thelustroid distanceD, as

Do(01,05) € d(0y,0,) and theaverage inter-cluster

e "SR 42 (044,025
distanceDs asD»(0;, 05) def (Zl:1 Ef;fM (002))%.
Both BUBBLE and BUBBLE-FM useD, as the distance
metric between leaf level clusters, and as the threshold
requirement’’, i.e., a new objec,.,, is inserted into

a cluster© with clustroid O only if Do(O,{Onew}) =
d(O, Onew) < T. (The use foD, is explained later.)

41.2

Incremental maintenance of leaf-level CFs
In this section, we describe the incremental maintenance of

The existence of a distance-preserving transformation iScp+g at the leaf levels of the CRree. Since the sets of

guaranteed by the following lemma.

Lemma 4.1 [19] Let O be a set of objects in a distance
space(S, d). Then there exists a positive integerk <
|O|) and a functionf : O — R* such thatf is anR¥-
distance-preserving transformation.

For example, three objecisy, z with the inter-object dis-
tance distributiond(z,y) = 3,d(y,z) = 4,d(z,z) =

3The medoidO}, of a set of objects) is sometimes used as a cluster
center [18]. Itis defined as the obje@t’™ € O that minimizes the average
dissimilarity to all objects ir®© (i.e., Z:;l d(0;, 0) is minimum when
O = O™). But, it is not possible to motivate the heuristic maintenance
a la clustroid—of the medoid. However, we expect similar heuristics to
work even for the medoid.

objects we are concerned with in this section are clusters,
we useC (instead of0) to denote a set of objects.

The incremental maintenance of the number of objects
in a clusterC is trivial. So we concentrate next on the
incremental maintenance of the clustraid Recall that
for a clusterC, C is the object inC with the minimum
RowSunvalue. As long as we are able to keep all the ob-
jects ofC in main memory, we can maintaihincrementally
under insertions by updating tiRowSunvalues of all ob-
jectsO € C and then selecting the object with minimum
RowSumvalue as the clustroid. But this strategy requires
all objects inC in main memory, which is not a viable op-
tion for large datasets. Since exact maintenance is not pos-
sible, we develop a heuristic strategy which works well in

practice while significantly reducing main memory require-

a clustroid changes, is expensive. Fortunately (from Obser-

ments. We classify insertions in clusters into two types, vation 2), ifn is large then the new set of objects within

Type land Type Il and motivate heuristics for each type
of insertion. A Type | insertion is the insertion of a single

object or, equivalently, a cluster containing only one object.

of C* is almost the same as the old g&because* is very
close toC.
Observations 1 and 2 motivate the following heuris-

Each object in the dataset causes a Type | insertion when itic maintenance of the clustroid. As long gY is small
is read from the data file, making it the most common type (smaller than a constap), we keep all the objects @f in

of insertion. A Type Il insertion is the insertion of a cluster

main memory and compute the new clustroid exactly. If

containing more than one object. Type Il insertions occur |C| is large (larger thamp), we invoke Observation 2 and

only when the CFtree is being rebuilt. (See Section 3.)
Type | Insertions: In our heuristics, we make the follow-

maintain a subset af of sizep. Thesep objects have the
lowestRowSumvalues inC and hence are closestdo If

ing approximation: under any distance-preserving transfor-the RowSunwvalue of O, is less than the highest of the
mation f into a coordinate space, the image vector of the p values, say that a®,, thenO,.,, replace),, in R. Our

clustroid is the centroid of the set of all image vectors, i.e.,

f(€) = f(C). From Lemma 4.2, we know that this is the

bestpossible approximation. In addition to the approxima- Type Il Insertions:

tion, our heuristic is motivated by the following two obser-

vations.

Observation 1 Consider the insertion of a new object

Onew into a clusterC = {04,...,0,} and assume that

only a subsefz C C is kept in main memory. Lef : C U

{Opnew} — RF be aR*-distance-preserving transforma-
)

tion fromC U {O,..., } into R¥, and letf (C) =
be the centroid of (C). Then RowSum(Opey)

= Z d2(0newﬂ Oj) = Z(f(onew) - f(OJ))2
= Z(f(oj) — F(©)? +n(f(C) = f(Onew))’

~ nr?(C) + nd*(C, Onew)

Thus, we can calculattowSun(O,,..,) approximately us-
ing only ¢ and significantly reduce the main memory re-
quirements.

Observation 2 LetC = {0Oy,...,0,} be a leaf cluster
in the CFE-tree andO,,.., an object which is inserted into
C. LetC andC* be the clustroids of andC U {Opew}
respectively. LetD, be the distance metric between leaf
clusters andl’” the threshold requirement of the Gkee
underDg. Then

A

d(C,C*) < ¢, wheree =

T
+1)

An implication of Observation 2 is that as long as we
keep a set? C C of objects consisting of all objects in
C within a distance ok from C, we know thatC* € R.

(n

experiments confirm that this heuristic works very well in
practice.

Let C; = {011,---,01n1 } and

Co = {0s1,...,02,,} be two clusters being merged.
Let f be a distance-preserving transformationCefu C,
into R*. Let X;; be the image vector in I8; U Cs)

of objectO;; under f. Let X; (X2) be the centroid of
{X1i,. o, Xin, } ({Xai, .., Xon,). Let C1,Cy be their
clustroids, and-(C,),r(C) be their radii. LetC* be the
clustroid ofC; U Cs.

The new centroid\ of f(C; U C») lies on the line join-
ing X; and X,; its exact location on the line depends on
the values of1; andn,. SinceD, is used as the threshold
requirement for insertions, the distance betwaeand X ;
is bounded as shown below:

n3 (X1 - X5)?
(TL1 + n2)2

2
nsT

(TL1 + n2)2

- n%dz (él,éz)

(X-X;)* = ~ (1 +12)?

The following two assumptions motivate the heuristic
maintenance of the clustroid under Type Il insertions.
(i) C; and(C, are non-overlapping but very close to each
other. SinceC; and (. are being merged, the threshold
criterion is satisfied implying thaf; and(C, are close to
each other. We expect the two clusters to be almost non-
overlapping because they were two distinct clusters in the
old CF*-tree.
(i) n1 =~ no. Due to lack of any prior information about
the clusters, we assume that the objects are uniformly dis-
tributed in the merged cluster. Therefore, the values,of
andn, are close to each other in Type Il insertions.

For these two reasons, we expect the new clustfsid
to be midway betwee6, andC., which corresponds to the
periphery of either cluster. Therefore we maintain a few
objects p in number) on the periphery of each cluster in its
CF*. Because they are the farthest objects from the clus-

However, when the clustroid changes due to the insertion oftroid, they have the higheRowSunvalues in their respec-

Onew, We have to updat® to consist of all objects withia

tive clusters.

of C*. Since we cannot assume that all objects in the dataset Thus we overall maintai-p objects for each leaf cluster

fitin main memory, we have to retrieve objectgifrom the

C, which we call therepresentative objecsf C; the value

disk. Repeated retrieval of objects from the disk, whenever2p is called therepresentation numbesf C. Storing the

representative objects enables the approximate incrementaime we update the sample objects we incur a certain cost.

maintenance of the clustroid. The incremental maintenanceThus we have to strike a balance between the cost of updat-

of the radius ot is similar to that ofRowSunvalues; de- ing the sample objects and their currency.

tails are given in the full paper [16]. Because a split athild; of NL causes redistribution of
Summarizing, we maintain the following information in its entries betweenhild; and the new nodehildy.,, we

the CF of a leaf clusteC: (i) the number of objects id, have to update samples S(Nland S(NL.) at entries Nk

(i) the clustroid ofC, (iii) 2 - p representative objects, (iv) and NL.,, of the parent (we actually create samples for the

theRowSunvalues of the representative objects, and (v) the new entry NL.1). However, to reflect changes in the dis-

radius of the cluster. All these statistics are incrementally tributions at all children nodes we update the sample objects

maintainable—as described aboveas the cluster evolves. at all entries of NL whenever one of its children splits.

4.2. CF's at Non-leaf Level 4.2.3 Distance measures at non-leaf levels
) . .) Let O,.., be a new object inserted into the Ctree.
In this section, we instantiate the clusterfegtures ?‘t_”O”'The distance betweenO,..,, and NL is defined to be
leaf levels of the BIRCH framework and describe their in- D5({Opew },S(NL;)). Since Do ({Onew },0) is meaning-

cremental maintenance. less, we ensure that each non-leaf entry has at least one
4.2.1 Sample Objects sample object from its child during the selection of sample
objects. Let L represent thé'" leaf entry of a leaf nodé.

In the BIRCH frgmework, the functlon_ahty of a CFat The distance betweghand L; is defined to be the clustroid
a non-leaf entry is to guide a new object to the SUb'treedistanceDo(C Ly)

which contains its prospective cluster. Therefore, the clus-
ter feature of theé*” non-leaf entry NI of a non-leaf node
NL summarizes the distribution of all clusters in the subtree
rooted at NL. In Algorithm BUBBLE, this summary, the
CF*, is represented by a set of objects; we call these ob-
jects thesample objectS(NL;) of NL; and the unionof all 5 BUBBLE-FM

sample objects at all the entries the sample objects S(NL) of o . i
NL. While inserting a new objee?,,..,, BUBBLE computes

We now describe the procedure for selecting the sam-distances betweed,,.., and all the sample objects at each
ple objects. Lethildy, ... child, be the child nodes at non-leaf node on its downward path from the root to a leaf
NL with 71,...,ns entries respectively. Let S(NLde- node. The distance functiehmay be computationally very

note the set of sample objects collected fremid; and as- expensive (e.g., the edit distance on strings). We address

sociated with Nl S(NL) is the union of sample objects tiS issue in our second algorithm BUBBLE-FMvhich
at all entries of NL. The number of sample objects to be IMProves upon BUBBLE by reducing the number of in-
collected at any non-leaf node is upper bounded by a con-Yocations ofd—using FastMap [11]. We first give a brief
stant called theample size (SSThe numbetS(NL;)| con- overview of FastMap and then describe BUBBLE-FM.

tributed by child; is MAX (”755J ,1). The restric- 5.1. Overview of FastMap
tion that each child node have at least one representative in Given aset of N objects, a distance functiah and an
S(NL) is placed so that the distribution of the sample ob- intégerk, FastMap quickly (in time linear i) computes
jects is representative of all its children, and is also neces-!V Vectors (calledmage vectorg one for each object, in a

sary to define distance measures between a newly inserte§-dimensional Euclidean image space such that the distance
object and a non-leaf cluster. dhild; is a leaf node, then ~ P€tween two image vectors is close to the distance between

the sample objects S(N)Lare randomly picked from allthe ~ the (_30”95'?020'"_19 two objects. Thus, FastMap is an “ap-
clustroids of the leaf clusters akild;. Otherwise, they are ~ Proximate” R"-distance-preserving transformation. Each

The instantiation of distance measures completes the in-
stantiation of BIRCH deriving BUBBLE. We omit the the
cost analysis of BUBBLE because it is similar to that of
BIRCH.

randomly picked fromhild;'s sample objects @hild;). of the & axes is defined by the line joining two objeéts.
The 2k objects are calleg@ivot objects The space defined
4.2.2 Updates to Sample Objects by the k axes is thefastmapped image spat8;.,,(O) of

. . O. The number of calls td made by FastMap to mal§y
The CF-tree evolves gradually as new objects are msertedObjects is3N ke, wherec is a parameter (typically set to 1

into it. The accuracy of the summary distribution captured or 2)
by sample objects at a non-leaf entry depends on how re- An important feature of FastMap that we use in

cently the sample objects were gathered. The periodicity OfBUBBLE—FM is its fastincremental mappingbility. Given
updates to these samples, and when these updates are ac-

tually triggered, affects the currency of the samples. Each “See Linet. al. for details [11].

a new objecD,,.,,, FastMap projects it onto thie coordi-
nate axes of 1$,,(0) to compute a-dimensional vector
for Osew N 1S4, (O) with just 2k calls tod. Distance be-
tweenO,,.,, and any objecO € O can now be measured
through the Euclidean distance between their image vectors

5.2. Description of BUBBLE-FM

BUBBLE-FM differs from BUBBLE only in its usage
of sample objects at a non-leaf node. In BUBBLE-FM, we
first map—using FastMap-the set of all sample objects ata
non-leaf node into an “approximate” image space. We then

use the image space to measure distances between an in-

coming object and the CB. Since CEs at non-leaf entries
function merely as guides to appropriate children nodes, an

approximate image space is sufficient. We now describe the

construction of the image space and its usage in detail.

Consider a non-leaf node NL. Whenever S(NL) is up-
dated, we use FastMap to map S(NL) inté-dimensional
coordinate space |$,(INL); k is called themage dimen-
sionalityof NL. FastMap returns a vector for each object in
S(NL). The centroid of the image vectors of S()is then
used as the centroid of the cluster represented byviMiile
defining distance metrics.

Let fm:S(NL)—I1S;,,,(NL) be the distance preserv-
ing transformation associated with FastMap that maps
each sample objeat € S(NL) to a k-dimensional vec-
tor fm(s) € 1Sy (NL). Let S(NL;) be the centroid
of the set of image vectors of S(NL. i.e., S(NL;)
ZSES(NLi) fmis)

[S(NL;)]
The non-leaf CF in BUBBLE-FM consists of (1) S(Nb
and (2)S(N L;). In addition, we maintain the image vectors
of the 2k pivot objects returned by FastMap.

The2k pivot objects define the axes of the k-dimensional
image space constructed by FastMap. Qgt,, be a new
object. Using FastMap, we incrementally mép,.., to
View € ISy (NL). We define the distance betweér).,,
and NL; to be the Euclidean distance betwegn.,, and
S(NL;). Formally,

D(Onew; S(NL)) “E |[Vaew — S(NLy) ||

Similarly, the distance between two non-leaf entrieg NL
and NL,; is defined to bé|S(NL;) — S(NL;)||. Whenever
|S(NL)| < 2k, BUBBLE-FM measures distances at NL in
the distance space, as in BUBBLE.

5.2.1 An alternative at the leaf level

We do not use FastMap at the leaf levels of th& e for
the following reasons.

1. Suppose FastMap were used at the leaf levels
also. The approximate image space constructed by

FastMap does not accurately reflect the relative dis-
tances between clustroids; the inaccuracy causes er-
roneous insertions of objects into clusters deteriorat-
ing the clustering quality. Similar errors at non-leaf
levels merely cause new entries to be redirected to
wrong leaf nodes where they will form new clusters.
Therefore, the impact of these errors is on the mainte-
nance costs of the CRree, but not on the clustering
quality, and hence are not so severe.

If 1S,,(L) has to be maintained accurately un-
der new insertions then it should be reconstructed
whenever any clustroid in the leaf nodechanges.

In this case, the overhead of repeatedly invoking
FastMap offsets the gains due to measuring distances
in 1Sy, (L).

2.

5.2.2

The image dimensionalities of non-leaf nodes can be dif-
ferent because the sample objects at each non-leaf node are
mapped into independent image spaces. The problem of
finding the right dimensionality of the image space has been
studied well [19]. We set the image dimensionalities of all
non-leaf nodes to the same value; any technique used to find
the right image dimensionality can be incorporated easily
into the mapping algorithm.

Our experience with BUBBLE and BUBBLE-FM on
several datasets showed that the results are not very sensi-
tive to small deviations in the values of the parameters: the
representation number and the sample size. We found that
a value of 10 for the representation number works well for
several datasets including those used for the experimental
study in Section 6. An appropriate value for the sample size
depends on the branching factB#" of the CF-tree. We
observed that a value 6fx BF works well in practice.

Image dimensionality and other parameters

time to associate each objeggte D with a cluster whose
) representative object is closestdo
6. Performance Evaluation We introduce some notation before describing the evalu-
In this section, we evaluate BUBBLE and BUBBLE- ation metrics. Letd,, ..., Ax be the actual clusters in the
FM on synthetic datasets. Our studies show that BUB- gataset andy;, ..., C be the set of clusters discovered by
BLE and BUBBLE-FM are scalable high quality clustering BUBBLE or BUBBLE-FM. Let4; (C;) be the centroid of
algorithms? clusterA4; (C;). LetC; be the clustroid of’;. Letn(C) de-
6.1. Datasets and Evaluation Methodology note the ”“T“ber of points n the Clus'g.r We use the f.°|'
lowing metrics, some of which are traditionally used in the

To compare with the Map-First option, we use two ggatistics and the Pattern Recognition communities [6, 7],
datasets DS1 and DS2. Both DS1 and DS2 have 10000Q evaluate the clustering quality and speed.

2-dimensional points distributed in 100 clusters [26]. How- . . K —
ever, the cluster centers in DS1 are uniformly distributed on ¢ Thed'Sto.mo.n(ZFl Z.Xecf (X -~ C;)°) of aset of
a 2-dimensional grid; in DS2, the cluster centers are dis- clusters indicates the tlghtneis °f the clusters.
tributed on a sine wave. These two datasets are also used e Theclustroid quality(CQ = ”A”;(icf”) is the average
to visually observe the clusters produced by BUBBLE and distance between the actual centroid of a cluster
BUBBLE-FM. _ . _ and the clustroid’; that is closest tof;.

We also generated k-dlmensm.nal datasets allcs. descrlbed « Thenumber of calls tal (NCD) and the time taken by
by Agrawal et al. [1]. The-dimensional boX0, 10]" is di- the algorithm indicate the cost of the algorithm. NCD

. ; h .
\é'.ded m_to 2 Xellls bty halw?g t.he rar(;gﬁe),l 10] Iove(rj gach h is useful to extrapolate the performance for computa-
imension. cluster center is randomly placed in eac tionally expensive distance functions.

of K cells chosen randomly from th@* cells, wherek

i; the'number qf c!usters in .the datase‘g. In eagh cluster,g o Comparison with the Map-First option
% Pboints are distributed uniformly within a radius ran-

domly picked from[0.5,1.0]. A dataset containingV k- We mapped DS1, DS2, and DS20d.50c.100K into an ap-

dimensional points anfl” clusters is denoted O®l.Kc.NV. propriate k-dimensional space (k = 2 for DS1, DS2, and
Even though these datasets consist-afimensional vec- 20 for DS20d.50¢.100K) using FastMap, and then used
tors wedo notexploit the operations specific to coordinate BIRCH to cluster the resulting k-dimensional vectors.
spaces, and treat the vectors in the dataset merely as ob- The clustroids of clusters obtained from BUBBLE and

jects. The distance between any two objects is returned byBUBBLE-FM on DS2 are shown in Figures 1 and 2 respec-
the Euclidean distance function. tively, and the centroids of clusters obtained from BIRCH

We now describe the evaluation methodology. The are shown in Figure 3. From the distortion values (Table 1),
clustroids of the sub-clusters returned by BUBBLE and W€ See that the quality of clusters obtained by BUBBLE or
BUBBLE-FM are further clustered using lierarchical ~ BUBBLE-FMis clearly better than the Map-First option.

clustering algorithm [20] to obtain the required number
of .clusters. Tq minimize the effect of hierarchical clus- DS1 105146 129798 195544
tering on the final results, the amount of memory allo- DS2 1147830 125093 125094
cated to the algorithm was adjusted so that the number of yg504 50c.100k| 2.214 *10° 211275 211275
sub-clusters returned by BUBBLE or BUBBLE-FM is very
close (not exceeding the actual number of clusters by more Taple 1. Comparison with the Map-First option

than 5%) to the actual number of clusters in the synthetic])

dataset. Whenever the final cluster is formed by merging 6-3 Quality of Clustering

sub-clusters, the clustroid of the final cluster is the centroid In this section, we use the dataset DS20d.50¢.100K. To
of the clustroids of sub-clusters merged. Other parameterslace the results in the proper perspective, we mention that
to the algorithm, thesample size (SS), the branching fac- the average distance between the centroid of each cluster
tor (B), and the representation numbe {p) are fixed at 4; and anactual pointin the dataset closest t; is 0.212.

75, 15, and 10 respectively (unless otherwise stated) as theyjence the clustroid qualitydQ) cannot be less than 0.212.
were found to result in good clustering quality. The image From Table 2, we observe that tB€ values are close to the
dimensionality for BUBBLE-FM is set to be equal to the di-

mensionality of the data. The datadets scanned a second Algorithm [l6) Actual | Computed

5The quality of the result from BIRCH was shown to be independent of Distortion | Distortion
the input order [26]. Since, BUBBLE and BUBBLE-FM are instantiations BUBBLE 0.289| 21127.4 21127.5
of the BIRCH* framework which is abstracted out from BIRCH, we do BUBBLE-FM | 0.294 | 21127.4 21127.5
not present more results on order-independence here.

Dataset Map-First | BUBBLE | BUBBLE-FM

Table 2. Clustering Quality

Figure 1. DS2: BUBBLE Figure 2. DS2: BUBBLE-FM Figure 3. DS2: BIRCH

$5=75,8=15,2p=10,#Clusters=50 S5=75,B=15,2p=10,#Clusters=50 SS=75,B=15,2p=10,#Points=200K

250 5e+07 300
BUBBLE-FM: time ~— BUBBLE-FM: NCD —~— BUBBLE-FM: time ~—
BUBBLE: time -+ 4.5e+07 9 BUBBLE: NCD —+— 250 BUBBLE: time ——

200+ 4e+07 4

3.5e+07 4 200

150 3e+07 4

2.5e+07 4 150

NCD value

1001 2e+07 4

Time (in seconds)
Time (in seconds)

100
1.5e+07 4

509 1e+07 50

5e+06

ot g
0 0
0 100 200 300 400 500 0 100 200 300 400 500 0 50 100 150

#points (in multiples of 1000) #points (in multiples of 1000) #iclusters

Figure 4. Time vs #points Figure 5. NCD vs #points Figure 6. Time vs #clusters

200 250 300

minimum possible value (0.212), and the distortion values while keeping the number of points constant at 200000. The
match almost exactly. Also, we observed that all the points results are shown in Figure 6. The plot of time versus num-
except a few (less than 5) were placed in the appropriateber of clusters is almost lineér.
clusters.

7. Data Cleaning Application

When different bibliographic databases are integrated,
different conventions for recording bibliographic items such
as author names and affiliations cause problems. Users fa-
miliar with one set of conventions will expect their usual
forms to retrieve relevant information from the entire col-
lection when searching. Therefore, a necessary part of the
integration is the creation of a joiauthority file[2, 15] in
" which classes of equivalent strings are maintained. These
equivalent classes can be assigned a canonical form. The
process of reconciling variant string forms ultimately re-
quires domain knowledge and inevitably a human in the
loop, but it can be significantly speeded up by first achieving
rough clustering using a metric such as the edit distance.
rouping closely related entries into initial clusters that act

6.4. Scalability

To study scalability characteristics with respect to the
number of points in the dataset, we fixed the number of clus-
ters at 50 and varied the number of data points from 50000
to 500000 (i.e., DS20d.50c.*).

Figures 4 and 5 plot the time and NCD values for BUB-
BLE and BUBBLE-FM as the number of points is in-
creased. We make the following observations. (i) Both al
gorithms scale linearly with the number of points, which
is as expected. (ii) BUBBLE consistently outperforms
BUBBLE-FM. This is due to the overhead of FastMap in
BUBBLE-FM. (The distance function in the fastmapped
space as well as the original space is the Euclidean distanc
function.) However, the constant difference between their
running times _suggests that the overhead due to the use ogsrepresentative stringbas two benefits: (1) Early aggre-
FastMap remr?lnj ;:fonstant even thougf;)the numbherof por']m;gjation acts as a “sorting” step that lets us use more aggres-
increases. The difference is constant because the overhe S : :
due to FastMap is incurred only when the nodes in the-CF Ive strategies in later stages with less risk of erroneously

. T . separating closely related strings. (2) If an error is made
tree split. Once the distribution of clusters is captured the . :
X in the placement of a representative, only that representa-
nodes do not split that often any more. (iii) As expected P P y b

. ' tive need be moved to a new location. Also, even the small
BUBBLE-FM has smaller NCD values. Since the overhead reduction in the data size is valuable, given the cost of the

due to thg use .Of FastMap remains constant, as the rmm'subsequent detailed analysis involving a domain expert.
ber of points is increased the difference between the NCD . - . . e
. Applying edit distance techniques to obtain such a “first
values increases.
To study scalability with respect to the number of clus- ™ eNCD versus number of clusters is in the full paper [16].
ters, we varied the number of clusters between 50 and 250 7Examples and more details are given in the full paper.

pass” clustering is quite expensive, however, and we there-References

fore applied BUBBLE-FM to this problem. We view this

application as a form of data cleaning because a large num- [1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
ber of closely related strings differing from each other by tomatic subspace clustering of high dimensional data for data
omissions, additions, and transposition of characters and mining. InSIGMOD, 1998.

words, are placed together in a single cluster. Moreover, it [2] L. Auld. Authority Control: An Eighty-Year Review.Li-

is preparatory to more detailed domain specific analysis in- brary Resources & Technical Servic@6:319-330, 1982.
volving a domain expert. We compared BUBBLE-FM with [3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
some other clustering approaches [14, 15], whichrake TheR*-tree: an efficient and robust access method for points
tive edit distance (REDPur results are very promising and and rectangles. I8IGMOD 1990.
indicate that BUBBLE-FM achieves high quality in much [4] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering al-
less time. gorithms to large databases. KibD, 1998.

We used BUBBLE-EM on a real-life datas®&DS of [5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient

access method for similarity search in metric spat®<DB,
1997.

[6] R. Dubes and A. Jain. Clustering methodologies in ex-
ploratory data analysis, Advances in Computedsademic

about 150,000 strings (representing 13,884 different vari-
ants) to determine the behavior of BUBBLE-FM. Table 3
shows our results on the datagebDS. A string is said to
be misplacedf it is placed in the wrong cluster. Since we Press, New York, 1980
know the exact set of clusters, we can count the number of I

. . . . [7] R. Duda and P. HartPattern Classification and Scene anal-
misplaced strings. We first note that BUBBLE-FM is much ysis Wiley, 1973

o LT s .

faster.than RED. Moreover, more than SQA: pf the time is _[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
spent in the second phase where each string in the datasetis = ;5aq algorithm for discovering clusters in large spatial

associated with a cluster. Second, parameters in BUBBLE- databases with noise. KDD, 1995.
FM can be set according to the tolerancenisclassifica- [9] M. Ester, H.-P. Kriegel, and X. Xu. A database interface for
tion error. If the tolerance is low then BUBBLE-FM returns clustering in large spatial databas&9D, 1995.
amuch larger number of clusters than RED but the misclas-[10] M. Ester, H.-P. Kriegel, and X. Xu. Focussing techniques for
sification is much lower too. If the tolerance is high, then it efficient class indentificationProc. of the 4th Intl. Sym. of
returns a lower number of clusters with higher misclassifi- Large Spatial Database4995.
cation error. [11] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for in-
dexing, datamining and visualization of traditional and mul-
Algorithm # of # of misplaced| Time timedia databaseSIGMOD, 1995.
clusters strings (in hrs) [12] D. H. Fisher. Knowledge acquisition via incremental con-
RED (run 1) 10161 69 45 ceptual clusteringMachine Learning2(2), 1987.
BUBBLE-FM (run 1) | 10078 897 7.5 [13] D. H. Fisher. Iterative optimization and simplification of hi-
BUBBLE-FM (run?2) | 12385 20 ’ erarchical clusterings. Technical report, Department of Com-

| | h puter Science, Vanderbilt University, TN 37235, 1995.
Table 3. Results on the dataset RDS [14] J. C. French, A. L. Powell, and E. Schulman. Applications

8. Conclusions of Approximate Word Matching in Information Retrieval. In
CIKM, 1997.

[15] J. C. French, A. L. Powell, E. Schulman, and J. L. Pfaltz.
Automating the Construction of Authority Files in Digital
Libraries: A Case Study. In C. Peters and C. Thanos, edi-

In this paper, we studied the problem of clustering large
datasets in arbitrary metric spaces. The main contributions
of this paper are:

1. We introduced the BIRCHframework for fast scal- tors, First European Conf. on Research and Advanced Tech-
able incremental pre-clustering algorithms and in- nology for Digital Libraries volume 1324 ol_ecture Notes
stantiated BUBBLE and BUBBLE-FM for clustering in Computer Sciencgpages 55-71, 1997. Springer-Verlag.
data in a distance space. [16] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and

J. French. Clustering large datasets in arbitrary metric

2. We introduced the concept of image space to general- ! - e ! _ _
spaces. Technical report, University of Wisconsin-Madison,

ize the definitions of summary statistics like centroid, 1998

radius to distance spaces. _ . -
P [17] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clus-
3. We showed how to reduce the number of calls to an tering algorithm for large databases.StGMOD, 1998.

expensive distance function by using FastMap with- [1g] | Kaufmann and P. Rousseufiinding Groups in Data - An

out deteriorating the clustering quality. Introduction to Cluster Analysiswiley series in Probability
and Mathematical Statistics, 1990.

t- [19] J. Kruskal and M. Wish. Multidimensional scalindsage
University Paper1978.

Acknowledgements:We thank Tian Zhang for helping us
with the BIRCH code base. We also thank Christos Falou
sos and David Lin for providing us the code for FastMap.

[20]
[21]

[22]

[23]

[24]

[25]

[26]

F. Murtagh. A survey of recent hierarchical clustering algo-
rithms. The Computer Journall983.

R. T. Ng and J. Han. Efficient and effective clustering meth-
ods for spatial data mining/LDB, 1994.

R. Shepard. The analysis of proximities: Multidimensional
scaling with an unknown distance, i and Psychometrika
pages 125-140, 1962.

W. Torgerson. Multidimensional scaling:i. theory and
method.Psychometrikal7:401-419, 1952.

M. Wong. A hybrid clustering method for identifying high-
density clustersJ. of Amer. Stat. Associv.7(380):841-847,
1982.

F. Young. Multidimensional scaling: history, theory, and
application s Lawrence Erlbaum associates, Hillsdale, New
Jersey, 1987.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An effi-
cient data clustering method for large databasi&MOD,
1996.

